

BEARCATS BEGIN HERE

Combining Fractions – Part 2

Finding the Least Common Multiple

List the first few multiples of the larger number. Then find the first multiple that is divisible by the smaller number.

Example

 $\frac{1}{3} + \frac{1}{4}$ 4, 8, 12, 16, ... \leftarrow multiples of 4 First multiple divisible by 3 (12 \div 3 = 4)

The least common multiplier (LCM) of 3 and 4 is 12

Adding Unlike Fractions

Step 1 – Find the least common multiple (LCM) which would be 10 for the following example

Step 2 – Rewrite the fractions with the least common multiple as the denominator by multiplying each fraction by the factor that gets the denominator of that fraction equal to the LCM.

Step 3 – Add the numerators, place the sum over the common denominator, and simplify the answer

Example

$\frac{1}{2} + \frac{1}{5} + \frac{1}{10}$	LCM of 2, 5, and 10 = 10
$\frac{1}{2} = \frac{1 \times 5}{2 \times 5} = \frac{5}{10}$	
$\frac{1}{5} = \frac{1 \times 2}{5 \times 2} = \frac{2}{10}$	
$\frac{1}{10} = \frac{1 \times 1}{10 \times 1} = \frac{1}{10}$	
$= \frac{5}{10} + \frac{2}{10} + \frac{1}{10} = \frac{8}{10} = \frac{4}{5}$	

Subtracting Unlike Fractions

Step 1 – Find the least common multiple (LCM)

Step 2 – Rewrite the fractions with the least common multiple as the denominator

Step 3 – Subtract the numerators, place the difference over the common denominator, and simplify the answer

Example

 $\frac{5}{6} - \frac{1}{4}$ LCM of 6 and 4 = 12

BEARCATS BEGIN HERE

 $\frac{5}{6} \times \frac{2}{2} = \frac{10}{12} \qquad \frac{1}{4} \times \frac{3}{3} = \frac{3}{12}$ $\frac{10}{12} - \frac{3}{12} = \frac{7}{12}$

Adding Mixed Numbers

Step 1 – Add the fractions, using the lowest common denominator (same as the LCM) which happens to be 12

Step 2 – Add the whole numbers (4 + 6) which results to 10

Step 3 – Combine and simplify.

Example

$$4\frac{1}{3} + 6\frac{2}{4}$$
 LCM of 3 and 4 is 12
= $4\frac{4}{12} + 6\frac{6}{12}$
= $10\frac{10 \div 2}{12 \div 2} \rightarrow 10\frac{5}{6}$

Subtracting Mixed Numbers

Step 1 – Subtract the fractions, using the lowest common denominator (same as the LCM).

Step 2 – Subtract the whole numbers (6 - 3 = 3)

Step 3 – Combine the differences of the whole numbers and the fractions and simplify.

Example

$$6\frac{1}{2} - 3\frac{1}{4}$$

 $6\frac{2}{4} - 3\frac{1}{4}$
 $3\frac{1}{4}$

BEARCATS BEGIN HERE

Using Order of Operations with Fractions

- Step 1 Do all operations inside the parentheses first
- Step 2 Simplify any expressions with exponents and find any square roots
- Step 3 Multiply or divide, proceeding from left to right
- Step 4 Add or subtract, proceeding from left to right

Example

 $\frac{1}{2} \left(\frac{2}{3}\right) - \left(\frac{1}{4}\right)^2$ $= \frac{2}{6} - \frac{1}{16}$ $= \frac{1}{3} - \frac{1}{16}$ $= \frac{16}{48} - \frac{3}{48}$ $= \frac{13}{48}$